

Chapitre 1 – LE COMPILATEUR

1 – INTRODUCTION

1.1 – MICROCONTROLEUR PIC

Un microcontrôleur est un microprocesseur RISC (Reduced Instruction Set Computeur) comportant un nombre d'instructions réduit et disposant de ports d'entrée/sortie pour communiquer avec l'environnement extérieur, de registres internes, de mémoire et d'une horloge interne ou externe.

Les microcontrôleurs PIC sont des microcontrôleurs fabriqués par la société Microchip qui fournit par ailleurs gratuitement la plate-forme logiciel de développement MPLAB IDE.

L'intérêt est, pour un faible coût, de disposer d'un composant programmable de nombreuses fois, pouvant être utilisé de façon autonome : plus besoin d'ordinateur une fois le composant programmé.

L'utilisation d'un microcontrôleur dans une application simplifie notablement les montages électroniques entraînant par la même occasion un gain de temps et de coût.

Les domaines d'utilisation principaux sont la robotique, la domotique, l'industrie.

1.2 – LES OUTILS POUR REALISER UNE APPLICATION

Pour développer une application fonctionnant à l'aide d'un microcontrôleur, il faut disposer d'un compilateur et d'un programmateur.

Programmateur : Transfert le programme du PC au PIC (hard+soft)

Le compilateur est un logiciel traduisant un programme écrit dans un langage donné (C, basic, assembleur) en langage machine. Ce logiciel peut aussi comporter un « debugger » permettant la mise au point du programme, et un simulateur permettant de vérifier son fonctionnement.

MPLAB IDE

Le fabricant Microchip fournit gratuitement le logiciel MPLAB IDE téléchargeable sur le site www.microchip.com

Le programmateur permet de transférer le programme compilé (langage machine) dans la

mémoire du microcontrôleur. Il est constitué d'un circuit branché sur le port COM du PC, sur lequel on implante le PIC, et d'un logiciel permettant d'assurer le transfert. Il existe différents logiciels, nous utiliserons Icprog.

1.3 – LANGAGE DE PROGRAMMATION UTILISE

Dans l'environnement MPLAB, Le programme doit être écrit en assembleur, langage peu évolué, peu convivial, et donc peu accessible aux étudiants bac+2.

On préfère donc un langage de programmation évolué : basic ou c. Notre choix se porte sur le langage c étudié par ailleurs en cours d'informatique d'instrumentation.

Le code source écrit en langage c doit donc être compilé en assembleur à l'aide d'un compilateur c.

On utilisera le compilateur CC5X dans sa version gratuite téléchargeable sur <u>www.bknd.com</u>. Cette version gratuite permet d'écrire environ 1ko de programme.

On peut alors intégrer CC5X dans l'environnement MPLAB. Ainsi CC5X devient un outil de MPLAB dans lequel l'écriture, la simulation et le debugging du programme en c devient alors possible.

2 – COMPILATEUR CC5X

2.1 – INSTALLATION

Cette installation a déjà été réalisée. Les indications suivantes vous sont fournies pour l'installation sur votre ordinateur personnel.

Créer un répertoire CC5X où vous le souhaitez sur le disque dur de votre PC. Télécharger CC5X free sur le site <u>www.bknd.com</u> Décompresser ce fichier.

Le répertoire CC5X contiendra le fichier exécutable cc5x.exe et les fichiers de définition (header .h) des microcontrôleurs utilisables avec CC5X.

2.2 – CARACTERISTIQUES

La version gratuite est limitée à 1 ko de programme.

Les divers types de variables sont codés de la façon suivante :

Type char : forcément non signés sur 8 bits Type signed char : 8 bits signés. Type int : 8 bits signés Type unsigned int : 8 bits non signés Type long : 16 bits signés Type unsigned long : 16 bits non signés Type bit : 1 bit Type float : nombre à virgule flottante codé sur 24 bits.

La version commerciale utilise des types entiers sur 24 et 32 bits et des nombres à virgule fixe.

3 - MPLAB IDE v7.31

3.1 – INSTALLATION

Cette installation a déjà été réalisée. Les indications suivantes vous sont fournies pour l'installation sur votre ordinateur personnel.

Créer un répertoire MPLAB sur le disque dur de votre ordinateur. Télécharger MPLAB sur le site <u>www.microchip.com</u> Décompresser le fichier.

Suivre les indications lors de l'installation.

Pour pouvoir utiliser le debugger, il faut ensuite corriger le fichier TLCC5X.INI situé dans le répertoire MPLAB IDE\Core\MTCSuites : Il faut remplacer « Target=HEX » par « Target=COD » et sauvegarder la modification.

3.2 - CONFIGURATION

Déclaration du compilateur CC5X : Menu Project/Set Langage Tool Locations.

Cette configuration a déjà été réalisée. Les indications suivantes vous sont fournies pour votre ordinateur personnel.

Déclarer également le chemin de MPASM et MPLINK :

Set Language Tool Locations	Set Language Tool Locations
Registered Tools B Knudsen Data CC5X E Executables CC5X C Compiler MPLINK Default Search Paths & Directories B Knudsen Data CC8E Byte Craft Assembler & C Compiler IAR PIC18 IAR Systems Midrange Microchip ASM30 Toolsuite	Registered Tools B Knudsen Data CC5X Executables CC5X C Compiler MPLINK B Default Search Paths & Directories B Knudsen Data CC8E B Knudsen Data CC8E B Byte Craft Assembler & C Compiler IAR PIC18 IAR Systems Midrange Microchip ASM30 Toolsuite
Location C:\Program Files\PIC\MPASM Suite\MPASMWIN.exe Help OK Cancel Apply	Location Browse C:\Program Files\PIC\MPASM Suite\mplink.exe Browse Help OK Cancel Apply

4 – CREATION D'UN NOUVEAU PROJET

4.1 - DEFINITION DU PROJET AVEC L'ASSISTANT

Dans le menu Project, sélectionner Project Wizard. Cela lance un assistant permettant de définir certaines options du projet.

the second s									
M 🐼	PLAE	B IDE 1	v7.31						
File	Edit	View	Project	Debugger	Programmer	Tools	Configure	Window	Help
🗋 🖆 🗔 🛛			Proje	ct Wizard			F 🖬 🖡		Checksum:
	Jntit	led W utput	New. Open Close Set A	 ctive Project	:	;	_ 🗆 🖻	3	
	Build	d Ve	Quick	build (no .as	m file)			-1	
		Clean Build (Options		•				
			Save Project Save Project As Add Files to Project Add New File to Project Remove File From Project			•			
			Select Set La Versio	: Language ⁻ anguage Too on Control	Foolsuite ol Locations				

Sélectionner d'abord un microcontrôleur :

Project Wizard		
Step One: Select a device		₿ \$
	Device:	
	PIC16F628	
	< Précédent Suivant > Annuler	Aide

Si la configuration décrite au §3.2 n'a pas été réalisée, il convient de le faire à présent :

Project Wizard 🔀
Step Two: Select a language toolsuite
Active Toolsuite: B Knudsen Data CC5X Toolsuite Contents CC5X C Compiler MPASM MPLINK
Location
C:\Program Files\PIC\CC5X\CC5X.EXE Browse
Help! My Suite Isn't Listed!
< Précédent Suivant > Annuler Aide

Définir ensuite un nom de projet et un chemin pour la sauvegarde du projet :

Project Wizard		
Step Three: Name your project		ال بې
Project Name		
proj1		
Project Directory		
F:\projets tut\essai-pic		Browse
	< Précédent Suivant > Annuler	Aide

La 4ème étape permet d'ajouter éventuellement un fichier déjà créé, par exemple un programme source en c. Si on désire écrire le programme ultérieurement, il faut cliquer sur annuler.

Project Wizard
Step Four: Add any existing files to your project
Image: projets tut Add >> Image: projets tut Image: projets tut Image: projets tut Image: projets tut
< Précédent Suivant > Annuler Aide

Ayant annulé cette dernière étape, on désire maintenant ouvrir une fenêtre pour l'écriture du programme en langage c. Pour cela, dans le menu fichier, sélectionner new :

4.2 – LES OPTIONS

Pour fonctionner correctement, CC5X a besoin d'accéder aux données spécifiques du PIC sélectionné. Ces données sont définies dans des fichiers de définition (header .h) situés dans le répertoire où CC5X a été installé. Il convient de définir ce chemin dans une fenêtre ouverte par le menu Project/Build Options.

5 – DEBUGGER

Pour pouvoir utiliser le Debugger, il faut sélectionner MPLAB SIM dans le menu Debugger :

Dans le menu Debugger, de nouvelles sélections apparaissent. Choisir settings pour définir quelques options pour la simulation, en particulier la fréquence de l'horloge dépendant du PIC choisi (4 Mhz pour un 16F84A).

ት የት 🕄 🖁
? 🗙
IS
tions
F

6 – SAUVEGARDE

Le projet a été modifié, il convient de le sauvegarder.

Chapitre 2 – PREMIER PROJET

1 – CREATION DU NOUVEAU PROJET

Lancer MPLab. Dans le menu Projet, sélectionner new.

🐼 MPLAB IDE	/7.31				
File Edit View	Project Debugger Programmer Tools	Config	jure Window	Help	
🗋 🖆 🖬 🛛	Project Wizard				
💣 🖻 🖬 I	New Open				
Checksum:	Close Set Active Project				
	Quickbuild (no .asm file)		_		
	Clean Build Ctrl+F Build Options	10	Project Na	r t me	
	Save Project Save Project As Add Files to Project Add New File to Project Remove File From Project	,	Project Dir I:\projets-p	ectory Dic	Browse
	Select Language Toolsuite Set Language Tool Locations Version Control		Help		OK Cancel

Définir le nom de votre projet et le répertoire pour la sauvegarde.

Définir les options :

Cela permet de définir le chemin du répertoire d'installation de CC5X.

Build Options For Project "proj1.mcp"	? 🔀		
General CC5X C Compiler MPASM MPLINK			
Output Directory, \$(BINDIR):	Browse		
Intermediates Directory, \$(TMPDIR):	Browse		Si nécessaire, remplacer
Assembler Include Path, \$(AINDIR):	Browse		« program Files » par « Progra~1 »
Include Path, \$(INCD1R):			pai «110gia 17
C:\Program Files\PIC\CC5X\	Browse		
Library Path, \$[LIBDIH]:	Browse		
Linker-Script Path, \$(LKRDIR):	Browse		
Help Suite Defaults		A	ppliquer la modification
OK Annuler			

Il convient ensuite de définir le microcontrôleur utilisé : Menu Configure/select device.

Se	elect Device		
	Device:		Device Family:
	PIC16F628	~	ALL 🔽
	PIC16F54	^	mort
Í	PIC16F57		pport
	PIC16F59		MPLABICD 2
			PICkit 1
	PIC16F628		
	PIC16F628A		out
	PIC16F630		pir
	PIC16F636	=	COMPILER
	PIC16F639		
1	PIC16F648A		
ſ			prt
	PIC16E684		
	PIC16F685		
	PIC16F687		IPLAB ICE 4000
	PIC16F688		No Module
	PIC16F689		
	PIC16F690		
	PIC16F716		
Ľ	PIC16F72		
	PIC10F73		
	PIC16F74		ei Heip
	PIC16F747		
	PIC16F76		
	PIC16F767		
	PIC16F77		
	PIC16F777	¥	

Puis il faut définir les options propres au microcontrôleur choisi : Menu configure/configuration bits

W	MPLAB IDE	v7.31							
File	Edit View) Project	Debugger	Programmer	Tools	Configure	Window	Help	
	🗋 🚅 🗐	1 %	8 8	M ?		Select D	evice		
1	NK					Configur	ation Bits	·	
6	1 🖻 🚽	🖏 🏥				External ID Memo	Memory		
	Checksum	n: 0x357	70				• y		
						Settings			
	1er-proje	et-1							
	Configu	ration Bi	ts					(
	Address	V	alue	Categor	У		Setti	ng	
	2007	ЗF	70	Oscillat	or		INTRC	I/0	
				Watchdog	g Time	er	Off		
				Power Up) Time	er	On		
				Brown Ou	it Det	tect	Enable	ed	
				Master (lear	Enable	Enable	ed	
Low Voltage Program Disabled									
				Data EE Read Protect			Disab	led	
				Code Pro	tect		Off		
L									

Ne pas oublier de sauvegarder régulièrement les modifications apportées au projet :

🐼 MPLAB IDE	v7.31						
File Edit View	Project	Debugger	Programmer	Tools	Configure	Window	Help
🗋 🖆 🔛	Proje	ct Wizard…			1 ,		
Checksum:	New. Open						
🔲 1er-projet	Close Set A	ctive Projec	t))		
🖃 🧰 1er-pr	Quick	build (no .as	m file)		-8		
	Clean Build) ~- ^{1/-}		Ctrl+F1	o .		
Libr	Save	Project			_		
Oth	Save Add F	Project As Files to Proje	ct				
	•						
	Select Set La	t Language " anguage Too	Toolsuite ol Locations				
Files 🔧	Jymoois						

2 – ECRITURE DU PROGRAMME EN C

Dans le menu File, sélectionner New. Cela fait apparaître la zone de texte pour l'écriture du programme.

Taper dans la zone de texte, sans pour l'instant chercher à comprendre, le programme suivant :

Sauvegarder ensuite le fichier que l'on nommera par exemple sorties.c **dans le même répertoire** que le projet : Menu File/Save as

Le fichier ainsi créé doit alors être ajouté comme fichier source dans le projet :

Ouvrir alors le fichier sorties.c que vous venez de créer.

On peut bien sûr ouvrir un autre fichier .c à condition qu'il soit dans le même répertoire.

Quelle que soit la méthode, nous obtenons :

3 – COMPILATION

Le projet créé peut maintenant être compilé : Menu Projet/Build

Avant la compilation, le répertoire de sauvegarde comporte les fichiers suivants :

			💌 🄁 ок
🔨 Nom	Taille	Туре	Date de modific 🔺
💦 1er-projet	22 Ko	Microchip MPLAB.Workspace	24/01/2007 18:44
🗐 sorties	1 Ko	Fichier C	24/01/2007 18:57
🗾 📉 1er-projet	1 Ko	Microchip MPLAB.Project	24/01/2007 19:00

La compilation réalisée à 19h00 ajoute 9 fichiers dans le répertoire de travail :

				💌 🄁 ок
^	Nom	Taille	Туре	Date de modific 🔺
	📉 1er-projet	22 Ko	Microchip MPLAB.Workspace	24/01/2007 18:44
	🗐 sorties	1 Ko	Fichier C	24/01/2007 18:57
	📉 1er-projet	1 Ko	Microchip MPLAB.Project	24/01/2007 19:00
	🗐 sorties	1 Ko	Fichier ASM	24/01/2007 19:00
	🔤 sorties.fcs	1 Ko	Fichier FCS	24/01/2007 19:00
	🔤 sorties.var	6 Ko	Fichier VAR	24/01/2007 19:00
	🔤 sorties.cod	4 Ko	Fichier COD	24/01/2007 19:00
	🔤 sorties.hex	1 Ko	Fichier HEX	24/01/2007 19:00
	🔤 sorties.lst	2 Ko	Fichier LST	24/01/2007 19:00
	🔤 sorties.occ	1 Ko	Fichier OCC	24/01/2007 19:00
	📼 1er-projet.tagsrc	1 Ko	Fichier TAGSRC	24/01/2007 19:00
	🚾 1er-projet.mptags	1 Ko	Fichier MPTAGS	24/01/2007 19:00

Nous verrons dans le chapitre suivant, le fichier devant être transféré dans le PIC.

4 – SIMULATION

Comme indiqué au chapitre 1, il faut préciser au logiciel que l'outil de mise au point est MPLAB SIM grâce au menu Debbuger, Select Tool :

Dans le menu Debugger, de nouvelles sélections apparaissent. Choisir settings pour définir quelques options pour la simulation, en particulier la fréquence de l'horloge dépendant du PIC choisi (4 Mhz pour un 16F628 utilisé avec l'horloge interne (Cf Configuration bits INTRC I/O sur on).

ect	Debugger Programmer Select Tool	Tools Conf	'igure Window Help
	Clear Memory Run F9 Animate Halt F5 Step Into F7 Step Over F8 Step Out	• Unt	Simulator Settings ? X Animation / Realtime Updates Limitations Osc / Trace Break Options SCL Options Processor Frequency
	Reset Breakpoints F2 StopWatch Stimulus Controller SCL Generator Profile	▶ 	4 Trace Options ✓ Trace All Break on Trace Buffer Full
	Refresh PM Settings		

Avant de simuler le fonctionnement du programme, il faut définir ce qu'il convient d'observer. Pour cela sélectionner Watch dans le menu View :

🚮 MPLAB	IDE v7.31							
File Edit	View Project De	ebugger Program	mer Tools Configure	Window Help				
🗋 🗋 🚅	✓ Project Output		💣 📽 🖬 🦻		·{ dd III d	ን ዋ ዋ 🗄		
CHECK	Toolbars	Animate	· nermet de					
1er-p	1 Disassembly 2 Hardware St 3 Program Mer 4 File Register s	simuler l'oprogramm	exécution du ne	Rese lanc	et avant de er l'animation			
	5 EEPROM		TRISA=0;		Watch			
	6 Memory Usag 7 LCD Pixel	e Gauge	RA0=0; RA1=1;		Add SFR CCP1CON	Add Symbol RA3		×
	8 Locals		RAZ=1; RA3=0;		Address	Symbol Name	Value	
	10 Call Stack 11 Special Func	tion Registers)		0005 0005 0005	RAO RA1 RA2	0x00 0x00 0x00	
Files	Simulator Trace Simulator Logic	Analyzer			0005	RA3	0x00	
					Watch 1 Watch 2	Watch 3 Watch 4		

La compilation ayant été réalisée auparavant, on peut sélectionner Add symbol, RA0 pour visualiser l'état de RA0 lors de la simulation du programme.

Puis sélectionner dans la liste Add SFR : CMCON et TRISA pour visualiser l'état de ces registres. Sélectionner aussi PORTA pour voir le mot binaire disponible sur le port A du pic.

MPLAB IDE v7.31									
File Edit View Project Debugger	File Edit View Project Debugger Programmer Tools Configure Window Help								
D 🚅 🛛 X 🖻 🛍 🚑									
Checksum: Oxcdae	Checksum: 0xcdae								
🗖 1er-projet.m 🔳 🗖 🔀	1er-projet.m 🔲 🗙 🗖 1:\projets-pic\sorties.c								
🖃 🚞 1er-projet.mcp 🔥		CMCON=0b00000111; TRISA=0b00000000;							
Source Files		RA0=0; RA1=0;	Watch						
		RA2=1; RA3=0;	Add SFR PORTA	Add Symbol RA	3				~
Library Files		}	Address	Symbol Name	Valu∇	Hex	Decimal	Binary	
Linker Scripts			0005	RAO	0x04	0x04	4	00000100	
📄 Other Files 🔛			0005	RA1	0x04	0x04	4	00000100	
E rit 💏 Sumbole			0005	RA2	0x04	0x04	4	00000100	
Files C Symbols	<		0005	RAG	0x04	0x04	4	00000100	
			001F	CMCON	0x07	0x07	7	00000111	
			0085	TRISA	0x20	0x20	32	00100000	
			0005	PORTA	0x04	0x04	4	00000100	
			Watch 1 Watch 2	Watch 3 Watch 4					

Lancer l'exécution de la simulation. On observe alors la modification des valeurs des registres et du port de sortie.

Noter que PORTA et les bits RA0, RA1 etc ... affichent en réalité la même information qui est le mot binaire disponible sur le port de sortie, donc de chaque bit RA0 à RA7.

Chapitre 3 – LE PROGRAMMATEUR

1 – CONSTITUTION DU PROGRAMMATEUR

Le programmateur de PIC est constitué d'un circuit imprimé relié par câble au port COM de l'ordinateur.

Ce programmateur PIC-01 sera relié à une alimentation stabilisée 16V.

Les alimentations stabilisées traditionnellement réglées à 12 V pour les TP d'électronique devront donc être ajustées à 16 V.

Le PIC-01 permet la programmation des microcontrôleurs PIC de chez MICROCHIP (familles PIC12Cxxx, PIC12Cxxx, PIC16Cxxx et PIC16Fxxx), ainsi que les EEPROM séries (famille 24 Cxx). Connectable sur le port série de tout compatible PC, il fonctionne avec un logiciel sous Windows 95/98/NT/2000 et maintenant XP. Il supporte les boîtiers DIP 8, 18, 28 et 40 broches permettant la programmation de plus de 60 composants différents.

Le PIC utilisé sera placé sur un premier support tulipe, duquel il ne devra pas être ôté, afin d'éviter de tordre puis casser les pattes du microcontrôleur lors des manipulations.

On veillera à ne pas se tromper sur le sens de branchement du PIC sur le programmateur :

2 – INSTALLATION DU LOGICIEL

Le logiciel IC-prog fonctionne avec le programmateur PIC-01. Les mises à jour du logiciel sont téléchargeables sur <u>www.seeit.fr</u>

Décompresser les fichiers téléchargés dans un répertoire. Bien vérifier que le fichier système icprog est bien présent dans ce répertoire.

🗀 Nouveau dossier			
Fichier Edition Affichage Favoris Outils ?			A
🕞 Précédente 🝷 🌍 🗧 🏂 🔎 Rechercher 🞼	Dossiers		
Adresse 🛅 D:\Icprog\Nouveau dossier			💌 🄁 ок
Nom 🔺	Taille	Туре	Date de modification
Gestion des fichiers 🔹 👔 icprog	1 283 K	o Fichier HTML compilé	04/04/2002 17:12
Créar un nouveau decrier 👋 icprog	2 778 K	o Application	22/12/2004 17:38
Creer of Hodvead dossier	6 K	o Fichier système	16/08/2002 17:28
Publier ce dossier sur le Web MD_ICprog(S	ΈΕΙΤ) 66 K	Document Microsoft	10/02/2003 23:53
Partager ce dossier 🔤 PIC16F84+24	4LC16B_Loader 7 K	o Fichier HEX	06/06/2005 12:16
🔤 PIC16F628+3	24LC64_Loader 2 K	o Fichier HEX	06/06/2001 18:40
Autres emplacements	24LC64_Loader 2 K	o Fichier HEX	29/08/2001 00:34

Lancer le logiciel en double cliquant sur l'application icprog.

3 – CONFIGURATION

3.1 – Configuration sous Windows XP

Sous WindowsXP, avec l'explorateur Windows, il faut sélectionner le fichier ICprog.exe. Faire un clic droit sur le fichier ICprog.exe. Dans le menu « Propriétés », sélectionner l'onglet « Compatibilité », cocher la case située dans le cadre « Mode de compatibilité », puis sélectionner « Windows 2000 » dans le menu déroulant.

3.2 - Configuration\Hardware F3

Permet de configurer l'interface de programmation entre le logiciel et la carte de programmation.

<u>Programmateur :</u> JDM programmer pour le programmateur PIC-01

Ports :

COM1 ou COM2. Dans tous les cas la LED verte de votre programmateur doit s'allumer lorsque vous effectuez une opération de lecture ou d'écriture. Si ce n'est pas le cas changez de port sélectionné.

<u>Délais I/O :</u> Ce réglage dépend du PC utilisé, essayez sur 1 ou sur 20 en cas de problème de programmation.

<u>Interface :</u> Sélectionner toujours Windows API.

🚸 IC-Prog 1.05D - Programmateur prototype	
Fichier Edition Buffer Configuration Commande Outils Voir Aide	
🖙 - 🖬 🛛 📭 📽 🐝 🌾 🍫 🗞 🖾 🕮 🖳 🛛 PIC 16F84A	• 8
Adresse - Program Code 00000: 3FFF 3FF 0010: 3FFF 3FF 0010: 3FFF 3FF 0018: 3FFF 3FF 0018: 3FFF 3FF 0020: 3FFF 3FF 0028: 3FFF 3FF 0030: 3FFF 3FF 0040: 3FFF 3FF 0040: 3FFF 3FF 0050: 3FFF 3FF 0050: 3FFF 3FF 0050: 3FFF 3FF 0058: 3FFF 3FF 0058: 3FFF 3FF 00001: FF FF FF 00002: FF FF FF 0010: FF FF FF 0020: FF FF FF 0020: FF FF FF 0020: FF FF FF 0020: FF FF FF 0030: FF FF FF	Configuration () Oscillateur: XT () Fusible (Fuses): VUDT PWRT CP Checksum ID Value 3BFD FFFF Config word : 3FFDh
Buffer 1 Buffer 2 Buffer 3 Buffer 4 Buffer 5 JDM Programmer sur Com1 Composa	ant: PIC 16F84A (133)

Communication :

Permet d'inverser les signaux envoyés ou reçus sur le port série. En général aucune case n'est cochée.

Pour la configuration exacte en fonction du programmateur utilisé, se référer au fichier « MiseEnOeuvreXXX-XX.doc » se trouvant sur la disquette livrée avec le PIC01.

3.3 - Configuration\Options\Misc

Priorité:

Permet de définir la priorité du logiciel par rapport aux autres logiciels fonctionnant en multitâches sous Windows. En général utiliser le mode « normal ». Utiliser le mode « haute » pour que ICprog soit prioritaire par rapport aux autres logiciels.

Active Driver NT/2000/XP:

Sous Windows 95/98/ME cette option n'est pas accessible. Sous Windows NT/2000/XP cocher cette case. Vérifier dans ce cas que le fichier « ICprog.sys » se trouve bien dans le même répertoire que ICprog.exe.

Active Vcc Control pour JDM :

Ne pas cocher cette case.

Mettre toutes les sorties au niveau haut :

Cette fonction permet de mettre toutes les sorties du port parallèle au niveau haut lorsque le port série est utilisé et de mettre toutes les sorties du port série au niveau haut lorsque le port

parallèle est utilisé. Cette fonction sert uniquement lorsque l'on utilise un programmateur spécial ayant à la fois le port série et le port parallèle de connecté sur le PC.

🚸 IC-Prog 1.05D - Programmateur prototype	
Fichier Edition Buffer Configuration Commande Outils Voir Aide	
😂 - 🖬 📭 🖀 🍫 🐝 🌾 🍫 🖏 🕮 🗐 PIC 16F84A	- 💈
Adresse - Program Code	Configuration 🔹 🕨
0000 Options	Oscillateur:
0010 Confirmation Notification I²C Programmation ÿÿÿ 0018 Confirmation Notification I²C Programmation ÿÿÿ 0020 Raccourcis Copier & Coller Smartcard Langage Shell Misc ÿÿÿ 0028 Options :	
0050 Image: Control pour JDM 0058 Image: Control pour JDM Adres: Image: Control pour JDM 00000 Image: Control pour JDM Image: Control pour JDM Image: Control pour JDM	Fusible (Fuses): VUDT PWRT CP
0028 0028 0030	Checksum ID Value 3BFD FFFF
0038: FF FF FF FF FF FF FF yyyyyyy	Config word : 3FFDh
Buffer 1 Buffer 2 Buffer 3 Buffer 4 Buffer 5	+ DIC 165944 (132)

3 – PREMIERE PROGRAMMATION 16F628

4.1 - PRINCIPE

Le logiciel du programmateur utilise un buffer, c'est à dire une mémoire intermédiaire entre les fichiers sur disques et les mémoires programmables des composants, tableau hexadécimal visualisé à l'écran.

Pour programmer un composant à partir d'un fichier il faut d'abord charger le contenu d'un fichier dans le buffer à l'aide de la commande « Fichier \Ouvrir fichier », puis transférer le contenu du buffer vers le composant avec le menu « Commande \Tout programmer ».

4.3 – TEST DE VIRGINITE

Relier le programmateur PIC-01 au port COM du PC par l'intermédiaire du câble.

Placer un PIC dans le bon sens sur le support adéquat.

Alimenter le programmateur à l'aide de l'alimentation stabilisée réglée à 16 V (vérifier au voltmètre). Lancer le logiciel ICprog. Menu Commande/Test de virginité, permet de vérifier si le composant est vide.

🗞 IC-Prog 1.05D - Programmateur prototype						
Fichier Edition Buffer Configuration Commande Outils Voir Aide						
Image: Constraint of the second sec	• 8					
Adresse - Program Code Programmer Configuration F4	Configuration					
0008: 3FFF 3FFF 3FFF 3FF Tout Effacer VÝÝÝÝÝÝÝ 0010: 3FFF 3FFF 3FFF 3FF Test de virginité VÝÝÝÝÝÝÝ						
0018: 3FFF 3FFF 3FFF 3FF 3FF 0020: 3FFF 3FFF 3FFF 3FF 0020: 3FFF 3FFF 3FFF 3FF Assistant Smartcard	Verrouillage (CP):					
0028: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3F						
0040: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3F						
0050: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3F	Fusible (Fuses):					
Adresse - Eepron Da Addition de tous les octets constituant le programme présent dans le composant. Cela permet d'identifier un programme par rapport à un autre et vérifier s'ils sont identiques. Cette valeur se modifie automatiquement lorsque l'on modifie le programme à l'écran.	MCLR BODEN LVP CPD Checksum ID Value 3573 FFFF					
Duffer 4 Buffer 3 Buffer 4 Buffer 5	Config word : 3F73h					
JDM Programmer sur Com1 Composa	nt: PIC 16F628 (146)					

Si le composant est vierge ou effacé tous les bits de la mémoire seront au niveau logique 1 (FF). Cette fonction est à utiliser avant toute programmation car il n'est pas possible de programmer un composant correctement si celui-ci n'est pas vierge ou n'a pas été effacé préalablement. Si ce n'est pas le cas, il faut effacer le composant : menu "Commande\Tout Effacer".

4.3 – CHOIX DU COMPOSANT, CONFIGURATION

Permet de sélectionner un microcontrôleur PIC du type 12Cxxx, 12Fxxx, 16Cxxx, 16Fxxx, 18Fxxx pour une utilisation avec le programmateur PIC-01. Pour les composants de la série 16C54/55/56/57/58, le mode de programmation est différent et il faut utiliser le programmateur PIC-02.

Différentes options apparaîtront également dans le cadre "Configuration" permettant de modifier les registres de configurations. Pour connaître l'utilisation de ces registres veuillez consulter le datasheet du fabricant concerné. Cependant quelques informations vous sont données ci-dessous pour les microcontrôleurs PIC.

Un choix entre plusieurs oscillateurs peut être réalisé.

Cette sélection dépend du type d'oscillateur connecté sur les entrées OSC1/CLKIN et OSC2/CLKOUT lors de l'utilisation du microcontrôleur sur son circuit final après la programmation. Pour les modes XT, un oscillateur à quartz ou un oscillateur TTL/C-MOS est connecté sur les entrées OSC1/CLKIN et OSC2/CLKOUT. Pour le mode RC, un pont RC est connecté sur l'entrée OSC1/CLKIN, (fréquence moins précise).

Validation ou non du WDT :

En validant cette case par une croix, le "Watchdog timer" sera activé. C'est à dire qu'un oscillateur interne indépendant de l'oscillateur externe sera fonctionnel même si le microcontrôleur est en position sommeil.

Validation ou non du PWRT :

En validant cette case par une croix, le "Power-up Timer" sera activé. Le microcontrôleur effectuera à sa mise sous tension un Reset général d'une durée de 72ms, le temps que la tension d'alimentation se stabilise.

Validation ou non du MCLR :

En validant cette case par une croix, le "Memory Clear" sera activé. Il sera possible de faire une remise à zéro externe par la broche "GP3\MCLR\Vpp " du microcontrôleur. Cette borne sera reliée au +5V du pic à travers une résistance (2,2 k Ω par exemple).

Validation ou non du CP :

En validant cette case par une croix, le "Code Protect" sera activé. Le programme intégré dans la mémoire du composant ne sera pas lisible si l'on fait une re-lecture de celui-ci. Cependant le composant reste effaçable pour être reprogrammé si celui -ci contient une mémoire Flash.

Attention si vous cochez cette case, le composant ne pourra pas être vérifié après programmation et un message d'erreur interviendra systématiquement lors de la vérification du composant après programmation. **On évitera donc de cocher cette case.**

D'autres explications sur le rôle des fusibles seront données plus loin.

4.4 – EXEMPLE DE PROGRAMMATION

Dans ICprog, ouvrir le fichier sorties hex créé au chapitre 2 § 3.

a 🗞 IC-Prog 1.05D - Programmateur pi	🏇 IC-Prog 1.05D - Programmateur prototype - J:\projets-pic\clignoled.hex
Fichier Edition Buffer Configuration Com	Fichier Edition Buffer Configuration Commande Outils Voir Aide
Ouvrir Fichier Ctrl+O	🖙 🕞 📲 🕼 🛸 🐝 🌾 🍫 📚 Assembleur 🗛 🖃 👔
Ouvrir Fichier Data	Adresse - Program Code Emplacement Composant Oconfiguration
Fichiers recents	0008: 0181 1283 1405 2809 1283 0181 1 0010: 280E 3FFF 3FFF 3FFF 3FFF 3 Rafraichir
Imprimer Ctrl+P 3FFF 3 Exit Ctrl+Q 3FFF 3 0028: 3FFF 3FFF 3FFF 3	0018: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF <u>yyyyyyyy</u> 0020: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF <u>yyyyyyyy</u> 0028: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF <u>yyyyyyyy</u> 0030: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF yyyyyyy
	Le programme peut être affiché en hexadécimal ou en assembleur dans la

fenêtre Adresse-Program Code.

On constate que le Checksum a changé de valeur.

Vérifier que la configuration des fusibles correspond à celle de la compilation du programme dans MP Lab, puis choisir Commande/ Tout programmer.

🗞 IC-Prog 1.05D - Programmateur prototype - I:\pic-07\4sorties.hex					
Fichier Edition Buffer Configuration Commande Outils Voir Aide					
Image: Second state Image: Second state Tout Lire F8 Image: Second state Image: Second state F5	- 3				
Adresse - Program Code Programmer Configuration F4	Configuration				
0008: 1405 1085 1105 158 Tout Effacer cÿÿ 0010: 3FFF 3FFF 3FFF 3FF Test de virginité YŸŸŸŸŸŸŸ	IntRC I/O				
0018: 3FFF 3FFF 3FFF 3FFF 3FF Vérifier F6 VYYYYYYY 0020: 3FFF 3FFF 3FFF 3FF 3FF YYYYYYYY 0028: 3FFF 3FFF 3FFF 3FF Assistant Smartcard VYYYYYYYY	Verrouillage (CP):				
0030: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF					
0048: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3F	Fusible (Fuses):				
Adresse - Eeprom Data					
0008: FF FF FF FF 0010: FF FF FF FF FF 0018: FF FF FF FF FF 0020: FF FF FF FF	CPD				
0028: FF FF FF FF OK	Checksum ID Value D236 FFFF				
	Config word : 3FF8h				
Buffer 1 Buffer 2 Buffer 3 Buffer 4 Buffer 5					
JDM Programmer sur Com1 Composa	int: PIC 16F628 (146)				

Lorsque le transfert du programme dans le pic est réalisé, le logiciel procède à une vérification. Si un message d'erreur apparaît, il peut s'agir d'un mauvaise connexion du programmateur (erreur de port série) ou d'une mauvaise alimentation du programmateur.

4 - UTILISATION DU PIC DANS UN MONTAGE

Le microcontrôleur ayant été programmé, il faut maintenant tester le fonctionnement du circuit dans le montage auquel il est destiné.

Mettre le programmateur hors tension en coupant l'alimentation stabilisée.

Sortir délicatement le PIC et son premier support de la carte programmateur. Utiliser une pince ou un tournevis glissé entre les deux supports.

Implanter le composant et son support sur une platine d'essais type Labdec.

Réaliser le câblage du montage correspondant au programme sur la platine Labdec :

Mettre sous tension et tester le fonctionnement.

Si tout s'est déroulé normalement, les leds branchées sur les sorties mises à 1 dans le programme sont allumées, les autres sont éteintes .

Chapitre 4 - MICROCONTROLEUR PIC 16F628

1 – PRESENTATION DU COMPOSANT

1.1 - INTRODUCTION

Le circuit 16F628 se présente sous la forme d'un circuit intégré disponible en boîtier DIL de 18 pattes.

Réalisé en technologie HCMOS FLASH, il constitue un microcontrôleur, c'est à dire un microprocesseur RISC c'est à dire à jeu d'instructions réduit (35 instructions) et de périphériques. Il est cadencé par une horloge interne ou externe pouvant avoir une fréquence de 0 à 20 MHz.

Ce composant dispose de en particulier de :

- deux ports d'entrée sortie. (RA et RB)
- d'un module comparateur analogique (AN et CMP)
- d'un module de capture et de comparaison de signaux PWM (CCP)

1.2 - BROCHAGE

1.3 – SCHEMA BLOCK

2 – PORTS D'ENTREES/SORTIES : Utilisation en Entrée.

2.1 – DESCRIPTION

Ce microcontrôleur dispose de deux ports bidirectionnels d'E/S : PORTA et PORTB de 8 bits

Ces ports peuvent servir d'E/S standard ou d'E/S de périphériques. En effet, certaines pattes de ces ports sont multiplexées avec d'autres fonctions de périphériques internes (comparateur et référence de tension par exemple). Chaque borne du port a donc plusieurs rôles qui doivent être définis par des registres de configuration associés. Quand le périphérique est activé, la borne ne peut plus être utilisée en E/S.

2.2 – PORT A

2.2.1 – FONCTION MULTIPLEXES

Le tableau ci-dessous décrit les différentes fonctions multiplexées sur le port A.

Name	Functio n	Input Type	Output Type	Description
RA0/AN0	RA0	ST	CMOS	Bi-directional I/O port
	AN0	AN	-	Analog comparator input
RA1/AN1	RA1	ST	CMOS	Bi-directional I/O port
	AN1	AN	-	Analog comparator input
RA2/AN2/VREF	RA2	ST	CMOS	Bi-directional I/O port
	AN2	AN	-	Analog comparator input
	VREF	—	AN	VREF output
RA3/AN3/CMP1	RA3	ST	CMOS	Bi-directional I/O port
	AN3	AN	-	Analog comparator input
	CMP1		CMOS	Comparator 1 output
RA4/T0CKI/CMP2	RA4	ST	OD	Bi-directional I/O port
	TOCKI	ST	-	External clock input for TMR0 or comparator output. Output is open drain type
	CMP2	_	OD	Comparator 2 output
RA5/MCLR/VPP	RA5	ST	-	Input port
	MCLR	ST	_	Master clear
	VPP	ΗV	-	Programming voltage input. When configured as MCLR, this pin is an active low RESET to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation
RA6/OSC2/CLKOUT	RA6	ST	CMOS	Bi-directional I/O port.
	OSC2	XTAL	-	Oscillator crystal output. Connects to crystal resonator in Crystal Oscillator mode.
	CLKOUT	-	CMOS	In ER/INTRC mode, OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1
RA7/OSC1/CLKIN	RA7	ST	CMOS	Bi-directional I/O port
	OSC1	XTAL	-	Oscillator crystal input
	CLKIN	ST	-	External clock source input. ER biasing pin.

Certaines de ces fonctions seront examinées dans les paragraphes suivants.

2.2.2 - UTILISATION EN ENTREES SORTIES NUMERIQUES

a) Registre CMCON

Les pattes du port A étant multiplexées avec les entrées du comparateur, il convient de définir leur rôle grâce au registre CMCON (Comparator Control Register) registre de contrôle du comparateur.

On doit avoir : CMCON = 0b00000111 = 0x07 = 7 pour forcer toutes les entrées en entrées numériques.

b) Registre TRISA

Ce registre permet de définir si la patte considérée fonctionne en entrée ou en sortie.

Un «1» dans un bit du registre TRISA met la sortie correspondante en haute impédance, elle peut ainsi servir d'entrée.

Un « 0 » dans une bit de ce registre transfert le contenu de la sortie de la bascule D sur la sortie correspondante.

Remarque : TRISA₆ et TRISA₇ sont forcés par la configuration de l'oscillateur. Dans ce cas la donnée lue est « 0 » et ces deux bits sont alors ignorés.

Remarque : Toute opération d'écriture sur une des sorties est précédée d'une lecture de la patte correspondante.

2.3 – PORT B

2.3.1 – FONCTION MULTIPLEXES

Le tableau ci-dessous décrit les différentes fonctions multiplexées sur le port B.

Name	Function	Input Type	Output Type	Description
RB0/INT	RB0	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	INT	ST	_	External interrupt.
RB1/RX/DT	RB1	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	RX	ST		USART Receive Pin
	DT	ST	CMOS	Synchronous data I/O
RB2/TX/CK	RB2	TTL	CMOS	Bi-directional I/O port
	TX	_	CMOS	USART Transmit Pin
	СК	ST	CMOS	Synchronous Clock I/O. Can be software programmed for internal weak pull-up.
RB3/CCP1	RB3	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	CCP1	ST	CMOS	Capture/Compare/PWM/I/O
RB4/PGM	RB4	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	PGM	ST	-	Low voltage programming input pin. Interrupt-on-pin change. When low voltage programming is enabled, the interrupt-on-pin change and weak pull-up resistor are disabled.
RB5	RB5	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
RB6/T1OSO/T1CKI/ PGC	RB6	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T1OSO	_	XTAL	Timer1 Oscillator Output
	T1CKI	ST	_	Timer1 Clock Input
	PGC	ST	_	ICSP Programming Clock
RB7/T1OSI/PGD	RB7	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T10SI	XTAL		Timer1 Oscillator Input
	PGD	ST	CMOS	ICSP Data I/O
Legend: O = Out — = Not TTL = TTL	put used . Input	CM(I OD	OS = CMO = Input = Open	S Output P = Power ST = Schmitt Trigger Input Drain Output AN = Analog

Certaines de ces fonctions seront examinées dans les paragraphes suivants.

2.3.2 - UTILISATION EN ENTREES SORTIES NUMERIQUES

a) Multiplexage sur le port B

Le port B est multiplexé avec :

- interruption externe
- USART
- CCP module
- TMR1 clock in/out

b) Registre TRISB

Ce registre permet de définir si la patte considérée fonctionne en entrée ou en sortie.

Un «1» dans un bit du registre TRISB met la sortie correspondante en haute impédance, elle peut ainsi servir d'entrée.

Un « 0 » dans une bit de ce registre transfert le contenu de la sortie de la bascule D sur la sortie correspondante.

Remarque : Toute opération d'écriture sur une des sorties est précédée d'une lecture de la patte correspondante.

3 – UTILISATION DU TIMER 0

Le composant dispose de 3 timers : timer0 (TMR0), timer1 (TMR1) et timer2 (TMR2)

3.1 – CARACTERISTIQUES DU TIMER 0

Le module Timer0 a les caractéristiques suivantes :

- timer ou compteur 8 bits
- Utilisable en lecture ou écriture
- Pré diviseur 8 bits programmable
- Sélection de l'horloge interne ou externe
- Interruption sur dépassement
- Sélection du front montant ou descendant pour l'horloge externe

3.2 – SELECTION DU MODE TIMER OU COMPTEUR

Cette sélection s'opère grâce au 5^{ème} bit TOCS du registre OPTION

3.3 – REGISTRE OPTION

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDO	G TOCS	TOSE	PSA	PS2	PS1	PS0
	bit 7							bit
bit 7	RBPU: PO	ORTB Pull-	-up Enable bi	it				
	1 = PORT 0 = PORT	B pull-ups	are disabled	by individual	port latch valu	les		
bit 6	INTEDG:	Interrupt E	dae Select b	it				
	1 = Intern 0 = Intern	upt on risin	g edge of RE	80/INT pin 80/INT pin				
bit 5	TOCS: TN	IR0 Clock	Source Selec	ct bit	-			
	1 = Trans	ition on RA	4/TOCKI pin					
	0 = Intern	al instruction	on cycle cloc	k (CLKOUT)				
bit 4	TOSE: TM	IR0 Source	e Edge Selec	t bit	2 30 4 1			
	1 = Increr	ment on hig	gh-to-low tran	sition on RA4	/TOCKI pin			
	0 = Increr	ment on low	w-to-high trar	sition on RA4	/T0CKI pin			
bit 3	PSA: Pres	scaler Assi	ignment bit					
	1 = Presc	aler is assi	igned to the \	NDT				
	0 = Presc	aler is assi	igned to the	imer0 module	9			
bit 2-0	PS2:PS0:	Prescaler	Rate Select	bits				
		Bit Value	TMR0 Rate	WDT Rate)			
		000	1:2	1:1	7			
		001	1:4	1:2	1.1.1			
		010	1:8	1:4	> Cho	oix du tau	x de divi	sion
		100	1:32	1:16			ac ac arvi	SION
		101	1:64	1:32				
		110	1:128	1:64	1.1			
		111	1:256	1 : 128)			
	Legend:							
	0 0 1	1.1. 1.2	147		II - Ileine	In second and he		07
	R = Read	able bit	VV =	Writable bit	U = Unimp	plemented b	it, read as	0

3.4 - PREDIVISEUR

Le pré-diviseur est partagé entre Timer0 et le chien de Garde (Watchdog Timer) ; Ce choix s'opère par l'état du bit 3 PSA du registre OPTION.

$$OPTION_3 = PSA$$

 $PSA = 1 \implies Pré diviseur sur le Watchdog timer$

 $PSA = 0 \implies Pré diviseur sur le Timer0$

Le taux de division est alors réglable par les bits PS0, PS1 et PS2 du registre OPTION (Voir ci dessus § 3.3)

3.5 – EXEMPLE : Temporisation

Pour utiliser le TIMER0 avec pré-division par 256, il faudra une ligne de code dans le

programme :

OPTION=0b00000111; TMR0 = 0; Ou OPTION=0x07; do { Ou OPTION=7; } } , while (TMR0 < 240);

3.6 - INTERRUPTION DU TIMER0

Une interruption est générée par le timer0 si le timer ou le compteur passe de xFF à x00 (en hexadécimal).

Ce dépassement met à 1 le bit TOIF, bit 2 du registre INTCON.

On peut activer ou pas cette interruption par le bit TOIE, bit 5 du registre INTCON.

 $INTCON_5 = TOIE$

TOIE = 1 \implies Interruption timer0 active

 $TOIE = 0 \implies$ Interruption timer0 inactive

Le taux de division est alors réglable par les bits PS0, PS1 et PS2 du registre OPTION (Voir ci dessus § 3.3)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF
	bit 7							bit (
7	GIE: Globa	I Interrupt E	Enable bit					
	1 = Enable 0 = Disable	s all unmas s all interru	ked interrup pts	ts				
	PEIE: Perip	heral Interr	upt Enable	bit				
	1 = Enable	s all unmas	ked periphe	ral interrupts	·			
	0 = Disable	s all periph	eral interrup	ots				
	TOIE: TMR	0 Overflow	Interrupt En	able bit				
	1 = Enable	s the TMR0	interrupt					
	0 = Disable	is the TMRI) interrupt	Frankla bit				
	INTE: RBU	INI Extern	al interrupt	interrunt				
	0 = Disable	s the RB0/I	NT external	interrupt				
	RBIE: RB	Port Change	e Interrupt E	nable bit				
	1 = Enable	s the RB po	ort change in	terrupt				
	0 = Disable	s the RB po	ort change i	nterrupt				
	TOIF: TMR	0 Overflow	Interrupt Fla	ag bit				
	1 = TMR0 0 = TMR0	register has register did	overflowed not overflow	(must be cle	eared in softwa	are)		
	INTF: RB0	INT Extern	al Interrupt	Flag bit				
	1 = The RE	0/INT exter	mal interrup	t occurred (r	nust be cleare	ed in softwa	re)	
	0 = The RE	80/INT exter	mal interrup	t did not occ	ur			
	RBIF: RB F	Port Change	Interrupt F	lag bit				
	1 = When a 0 = None o	at least one f the RB7:R	of the RB7: RB4 pins hav	RB4 pins ch ve changed s	anged state (r state	nust be clea	ared in softv	vare)
	Legend:							
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimp	lemented b	it, read as '	0'
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is	cleared	x = Bit is ur	hnown

4 – UTILISATION DU COMPARATEUR

4.2 - LES COMPARATEURS

Le microcontrôleur comporte 2 comparateurs donc 4 entrées et 2 sorties.

Ces entrées sorties de comparateur sont multiplexées avec les entrées sorties numériques du port A comme déjà signalé.

Les fonctions de comparaisons réalisées sont définies par les bits CM2 CM1 et CM0 du registre CMCON (Cf § 4.3).

Le registre TRISA contrôle la direction des données (E/S) pour chaque entrée/sortie du port A même en mode comparateur. Il convient donc d'initialiser correctement TRISA.

4.3 – DIFFERENT'S MODES DE COMPARAISON

Le tableau ci-dessous récapitule les différentes configurations possibles.

Exemple :

Si l'on souhaite utiliser un seul comparateur, les bits CM2 CM1 et CM0 du registre CMCON sont respectivement 101.

Le comparateur est alors constitué des deux entrées RA1/AN1 (patte 18) et RA2/AN2 (patte 1). Le résultat de la comparaison est disponibles sur les bits 6 et 7 du registre CMCON.

Ces deux bornes appartiennent au port A qui doit être configuré correctement à l'aide de TRISA : RA1/AN1 et RA2/AN2 en entrées

On a alors TRISA = 0bxxxxx11x.

4.4 – SORTIES DU COMPARATEUR

Les résultats des deux comparaisons sont disponibles sur les bits 6 et 7 du registre CMCON. (Ces deux bits sont en lecture seule).

Ils peuvent aussi être transmis sur les sorties RA3/AN3/CMP1 (patte 2) et RA4/TOCKI/CMP2 (patte3). Pour cela il faut être dans la configuration où CM2 :CM0=110.

Ces deux bornes appartenant au port A, il faut les configurer en sortie à l'aide de TRISA : TRISA = 0bxxx00xxx

4.5 - COMPLEMENTS SUR LE REGISTRE CMCON

	CMCON R	EGISTER	ADDRES	S: 01Fh)				
	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0
	bit 7							bit 0
bit 7	C2OUT: Con <u>When C2IN\</u> 1 = C2 VIN+ 0 = C2 VIN+	nparator 2 Ou <u>/ = 0:</u> > C2 VIN- < C2 VIN-	tput					
	When C2INV 1 = C2 VIN+ 0 = C2 VIN+	<u>/ = 1:</u> < C2 VIN- > C2 VIN-						
bit 6	C1OUT: Con <u>When C1INV</u> 1 = C1 VIN+ 0 = C1 VIN+	nparator 1 Ou <u>/ = 0:</u> > C1 VIN- < C1 VIN-	tput					
	When C1INV 1 = C1 VIN+ 0 = C1 VIN+	<u>/ = 1:</u> < C1 VIN- > C1 VIN-						
bit 5	C2INV: Com 1 = C2 Outpu 0 = C2 Outpu	parator 2 Outp ut inverted ut not inverted	out Inversior		Inver	sion des so	rties	
bit 4	C1INV: Com 1 = C1 Outpu 0 = C1 Outpu	parator 1 Outp ut inverted ut not inverted	out Inversior		Du	comparate	ur	
bit 3	CIS: Compar <u>When CM2:</u> Then: 1 = C1 VIN- c 0 = C1 VIN- c	rator Input Sw CM0: = 001 connects to RA connects to RA	itch A3 A0					
	<u>When CM2:C</u> Then: 1 = C1 VIN- c C2 VIN- c 0 = C1 VIN- c	CM0 = 010 connects to RA connects to RA connects to RA	A3 A2 A0	$\left\{ < \right\}$	Bit de con des entrée	trôle du mu es des comp	ltiplexage parateurs	>
bit 2-0	CM2:CM0: C Figure 9-1 sh	comparator Mo nows the Com	ode parator mod) les and CM2:	CM0 bit settings			
	Legend:							
	R = Readat	ole bit	W = W	Vritable bit	U = Unimp	lemented bi	t, read as '0)'
	-n = Value a	at POR	'1' = B	lit is set	'0' = Bit is d	cleared	x = Bit is ur	known

4.6 – EXEMPLE

Le programme suivant permet de faire fonctionner le pic en comparateur, comme un simple ampli op en boucle ouverte.

void main(void) { CMCON=0b00000110 ; /*choix du mode de comparaison Cf tableau §4.3 */ TRISA=0b00000110 ; /*RA1 et RA2 entrées, RA4 en sortie */ }

Après voir compilé le programme source et programmé le composant, on peut câbler le montage suivant pour tester le fonctionnement :

La résistance Rt est une résistance dite de tirage (pull up).

Elle est nécessaire car la sortie RA4 en mode comparateur est à drain ouvert :

5 – UTILISATION DE TENSIONS DE REFERENCE

5.1 – REALISATION DE LA TENSION DE REFERENCE

Le module est constitué d'un réseau de résistances en échelle permettant de fabriquer une tension de référence V_{Ref}.

5.2 – VALEUR DE LA TENSION DE REFERENCE

On dispose de deux gammes dont le choix s'opère par V_{RR} le bit 5 du registre VRCON. La valeur exacte dans la gamme est commandée par V_{R} les bits 3 à 0 du registre VRCON.

$$VRON_5 = V_{RR}$$

 $V_{RR} = 1$ $Vref = V_R < 3 : 0 > *V_{DD}/24$ $V_{RR} = 0$ $Vref = V_R < 3 : 0 > *V_{DD}/32 + V_{DD}/4$

V_R<3:0> est la valeur décimale du mot binaire contitué par les bits VR3 VR2 VR1 VR0 du registre VRCON.

5.3 – TRANSMISSION DE LA TENSION DE REFERENCE SUR LA SORTIE

La tension de référence doit être activée par le bit 7 mis à 1 dans le registre VRCON.

La tension de référence élaborée est envoyé sur la sortie $RA2/AN2/V_{REF}$ du port A si V_{ROE} le bit 6 du registre VRCON est à 1. Sinon, la tension de référence est déconnectée.

Ainsi on doit avoir VRCON = $0b1110\ 0110 => Vref = 6*V_{DD}/24 = 1,25 V$ envoyé sur la sortie RA2.

En même temps, **la sortie RA2 du port A doit être configurée en entrée (?!)** par l'intermédiaire du registre TRISA : TRISA = 0bxxxxx1xx

void main(void)
{
VRCON=0b11100110;
TRISA=0b00000100;
}

5.4 – REGISTRE VRCON

	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	VREN	VROE	VRR	_ >	VR3	VR2	VR1	VR0
	bit 7							bit (
bit 7	VREN: VREF	Enable						
	1 = VREF cire	cuit powere	ed on					
	0 = VREF cire	cuit powere	ed down, no	DD drain				
bit 6	VROE: VREF	Output En	able					
	1 = VREF is a	output on F	RA2 pin					
	0 = VREF is o	disconnect	ed from RA	2 pin				
bit 5	VRR: VREF R	ange sele	ction					
	1 = Low Rar 0 = High Rai	nge nge						
bit 4	Unimpleme	nted: Rea	d as '0'					
bit 3-0	VR<3:0>: VR When VRR = When VRR =	EF value s 1: VREF = 0: VREF =	election 0 ≤ (VR<3:0>/ : 1/4 * VDD +	VR [3:0] ≤ 1 24) * VDD · (VR<3:0>/ 3	5 2) * Vdd			
	Legend:							
	R = Readab	le bit	W = V	Vritable bit	U = Unimp	emented b	it, read as "	0'
	-n = Value a	POR	'1' = P	lit is set	'0' = Bit is	cleared	x = Bit is un	known

5.5 – UTILISATION EN CNA

La sortie Vref programmée par l'intermédiaire d'un mot binaire $V_R < 3:0>$ constitue un Convertisseur Numérique Analogique. Cependant, cette sortie ne peut être chargée sans l'utilisation d'un étage suiveur.

6 – UTILISATION DU TIMER 1

6.1 – DESCRIPTION DU TIMER 1

Le module Timer 1 est un timer/compteur 16 bits constitué de deux registres 8 bits TMR1H et TMR1L pouvant être en lecture ou écriture.

Le Timer 1 s'incrémente donc de 0x0000 à 0xFFFF puis repasse à 0x0000. Le dépassement est signalé par le bit TMR1IF du registre PIR1.

6.2 – REGISTRE T1CON

Le bit 0 de ce registre permet d'activer ou désactiver le timer1.

 $\begin{tabular}{|c|c|c|c|c|}\hline T1CON_0 = TMR1ON \end{tabular} \end{tabular} \left\{ \begin{array}{ccc} TMR1ON = 1 & Timer \ 1 \ actif \\ & TMR1ON = 0 & Timer \ 1 \ désactivé \end{array} \right.$

Les bits 4 et 5 permettent de choisir le taux de division de la fréquence d'horloge interne ou externe.

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
	bit 7							bit 0
	Unimplem	ented: Re	ad as '0'					
	T1CKPS1:	T1CKPS0	: Timer1 Inpu	t Clock Pres	cale Select bit	s		
	11 = 1:8 Pi	rescale val	ue					
	10 = 1:4 Pi	rescale val	ue					
	01 = 1:2 Pi	rescale val	ue					
	00 = 1:1 Pl	rescale val	ue					
	TIOSCEN	Imer1 O	scillator Enat	ble Control bi	t			
	1 = Oscilla 0 = Oscilla	tor is enab	off ⁽¹⁾					
	TISYNC:	Timer1 Ext	ernal Clock Ir	nput Synchro	nization Contr	ol bit		
	TMR1CS =	1						
	1 = Do not	synchroniz	ze external cl	ock input				
	0 = Synchr	onize exte	rnal clock inp	out				
	This bit is i	anored. Ti	mer1 uses the	e internal clo	ck when TMR	1CS = 0.		
	TMR1CS	Timer1 Clo	ck Source Se	elect bit				
	1 = Externa	al clock fro	m pin RB6/T	10SO/T1CK	l (on the rising	edae)		
	0 = Interna	I clock (Fo	sc/4)		(
	TMR10N:	Timer1 On	bit					
	1 = Enable	Timer1						
	0 = Stops	limer1						
*	Note 1: 7	he oscillat	or inverter an	nd feedback	resistor are tui	med off to e	liminate po	wer drain.
	Legend:							
	R = Reada	able bit	W = V	Vritable bit	U = Unimp	lemented b	it, read as '	0'
	- Malue	at DOD	·4· - 5	lit in oot	'O' - Dit in	alaarad	v - Dit in u	alenaum

6.3 – SELECTION DU MODE TIMER OU COMPTEUR

Cette sélection s'effectue grâce au bit TMRCS du registre T1CON.

6.4 – BLOC DIAGRAMME DU TIMER 1

7 – MODULE CCP

Ce module contient un registre 16 bit constitué en réalité de deux registres 8 bits : CCPR1H et CCPR1L.

Les opérations de ce module sont contrôlées par le registre CCP1CON.

Ce module peut fonctionner de trois façons :

- mode capture, en relation avec le timer 1
- mode compare, en relation avec le timer 1
- mode PWM, en relation avec le timer 2.

7.1 – REGISTRE CCP1CON

	CCP1CON REGISTE	R (ADDRESS: 17h)									
	U-0 U-0	R/W-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
		CCP1X CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0					
	bit 7					bit (
bit 7-6	Unimplemented: Read	d as '0'									
bit 5-4	CCP1X:CCP1Y: PWM	Least Significant bits									
	Capture Mode: Unused										
	Compare Mode: Unuse	ed									
	PWM Mode: These bits	are the two LSbs of the	PWM duty cyc	le. The eig	ht MSbs ar	e found in					
	CCPRXL.										
bit 3-0	CCPTIM3:CCPTIMU: CCPX Mode Select bits										
	0000 = Capture/Compare/PWM off (resets CCP1 module)										
	0100 = Capture mode, every falling edge										
	0101 = Capture mode, every rising edge										
	0111 = Capture mode, every 4th hsing edge										
	1000 = Compare mode, set output on match (CCP1IF bit is set)										
	1001 = Compare mode, clear output on match (CCP1IF bit is set)										
	1010 = Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected)										
	1011 = Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1										
	11xx = PWM mode										
	ن										
	Legend:										
	R = Readable bit	W = Writable bit	U = Unimple	mented bi	t, read as '()'					
		141 - D'L's	101 511 1								

7.2 – MODE CAPTURE

Ce mode permet de transférer la valeur (16 bits) du timer 1 dans les deux registres 8 bits CCPR1H et CCPR1L, lorsqu'un évènement se produit sur le port RB3 d'entrée.

Le timer 1 doit alors être en mode timer ou compteur synchrone.

RB3 doit bien sûr être configuré en entrée $TRISB_3 = 1$.

L'évènement déclenchant le transfert est sélectionné par les bits 0 à 3 du registre CCP1CON. (Cf $\S7.1$) :

- Sur chaque front descendant du signal connecté sur RB3
- Sur chaque front montant du signal connecté sur RB3
- Tous les 4 fronts montants du signal connecté sur RB3
- Tous les 16 fronts montants du signal connecté sur RB3

Les bits 0 à 3 du registre CCP1CON permettent donc de régler un pré-diviseur agissant sur le signal appliqué à RB3.

La réalisation de la capture est signalée par la mise à 1 du drapeau correspondant : bit 2 CCP1IF du registre PIR1. Ce bit doit alors être remis à 0 dans le programme.

Le contrôle de l'interruption est réalisé par le bit 2 CCP1IE du registre PIE1.

Attention : le changement du mode de capture entraîne une fausse interruption. Avant toute modification du mode, il faut désactiver l'interruption et remettre à zéro le drapeau CCP1IF.

7.3 – REGISTRES PIR1 ET PIE1

Le registre PIR1 est un registre regroupant les drapeaux d'interruption c'est à dire des bits signalant qu'un évènement déclenchant une interruption s'est produit.

Le registre PIE1 est le registre qui active ou pas les interruptions.

	R/W-0	R/W-0	R-0	R-0	U-0	R/W-0	R/W-0	R/W-0						
	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF						
	bit 7		,,					bit (
7	EEIF: EEP	ROM Write	Operation In	nterrupt Flag	g bit									
	1 = The wr 0 = The wr	rite operation rite operation	n completed n has not co	(must be cl mpleted or l	eared in softw has not been s	vare) started								
6	CMIF: Con	nparator Inte	errupt Flag b	it										
	1 = Compa 0 = Compa	arator output arator output	t has change t has not cha	ed anged										
5	RCIF: USA	ART Receive	Interrupt Fl	ag bit										
	1 = The US	SART receiv	ve buffer is fu	الد										
	0 = The US	SART receiv	e buffer is e	mpty										
4	TXIF: USA	RT Transmi	t Interrupt F	lag bit										
	1 = The US	SART trans	nit buffer is a	empty										
2		SART LIAIIS		iun										
	COD41E: C	CD1 Intern	u as u											
. 2	Capture Mode													
	1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred													
	Compare Mode													
	1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred													
	PWM Mod	e	er compare	match occu	neu									
	Unused	in this mode	Э											
t 1	TMR2IF: T	MR2 to PR	2 Match Inte	rrupt Flag b	it									
	 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred 													
t 0	TMR1IF: TMR1 Overflow Interrupt Flag bit													
•	1 = TMR1 register overflowed (must be cleared in software)0 = TMR1 register did not overflow													

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'	

PIE1 REGISTER (ADDRESS: 8Ch)

DANO	DAN O	DALLOO.	DAMA		-	-	-					
R/W-0	R/W-U	R/W-0	R/W-0	0-0	R/W-0	R/W-0	R/W-0					
bit 7	CMIE	RCIE	IXIE		CCPTIE	IMR2IE	bit					
LEIE: EE virite Complete Interrupt Enable Bit												
1 = Enable 0 = Disable	es the EE wri es the EE wr	ite complete rite complete	e interrupt e interrupt									
CMIE: Con	nparator Inte	errupt Enab	le bit									
1 = Enable 0 = Disable	es the compa es the compa	arator interr arator inter	upt rupt									
RCIE: USA	ART Receive	Interrupt E	nable bit									
1 = Enable 0 = Disable	es the USAR	T receive in T receive i	nterrupt nterrupt									
TXIE: USA	RT Transmit	t Interrupt E	Enable bit									
1 = Enable 0 = Disable	es the USAR	T transmit i T transmit	nterrupt interrupt									
Unimplem	ented: Read	d as '0'										
CCP1IE: C	CP1 Interru	pt Enable b	it									
1 = Enable 0 = Disable	s the CCP1 es the CCP1	interrupt interrupt										
TMR2IE: T	MR2 to PR2	Match Inte	errupt Enable	e bit								
1 = Enable 0 = Disable	s the TMR2 es the TMR2	to PR2 ma	tch interrupt	t								
TMR1IE: T	MR1 Overflo	ow Interrup	t Enable bit									
 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt 												
Legend:												
R = Reada	ble bit	VV = V	Vritable bit	U = Unimple	mented bi	t, read as '0)')					
-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is cl	eared	x = Bit is un	known					

7.4 – MODE COMPARE

Dans ce mode, le registre 16 bits CCPR1 (CCPR1H et CCPR1L) est constamment comparé au timer 1.

Quand ils sont égaux, cela est signalé sur la sortie RB3 :

- Soit par un état haut
- Soit par un état bas
- Soit par un maintient de la valeur présente.

L'action sur la patte RB3 est choisie par les bits 0 à 3 du registre CCP1CON. (Cf § 7.1).

RB3 doit bien sûr être configuré en sortie $TRISB_3 = 0$.

Le timer 1 doit alors être en mode timer ou compteur synchrone.

Comme dans le mode capture, la réalisation de l'égalité est signalée par la mise à 1 du drapeau correspondant : bit 2 CCP1IF du registre PIR1. Ce bit doit alors être remis à 0 dans le programme.

Le contrôle de cette interruption est réalisé par le bit 2 CCP1IE du registre PIE1.

Si CCP1CON <3:0> = 1010 alors la réalisation de l'égalité entraı̂ne une interruption logiciel sans affecter RB3.

Si CCP1CON <3:0> = 1011 alors la réalisation de l'égalité remet à zéro le timer 1. On a ainsi un timer 1 dont la période est programmable par le registre CCP1.

8 – UTILISATION DU TIMER 2

Le timer 2 est un timer 8 bits avec pré et post-diviseurs programmables par l'intermédiaire du registre T2CON.

Il peut être utilisé en lecture et écriture et est remis à zéro par le reset du microcontrôleur. Il est activé ou désactivé par le bit 2 du registre T2CON.

Il sert de base de temps pour le mode PWM du module CCP : timer 2 s'incrémente de 0x00 jusqu'à ce qu'il atteigne la valeur du registre PR2 puis repasse à 0x00 lors du cycle suivant. (fonctionnant en lecture et écriture).

Le bit 1 TMR2IF du registre PIR1 signale l'égalité timer 2 = PR2 en passant à 1. Ce drapeau doit alors être remis à zéro dans le programme.

	T2CO	N: TIMER C	ONTROL P	REGISTER	(ADDRESS:	12h)						
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0				
	bit 7							bit 0				
bit 7	Unimplen	nented: Read	as '0'									
bit 6-3	TOUTPS	3:TOUTPSO: 1	imer2 Outpu	ut Postscale	Select bits							
	0000 = 1:	1 Postscale V	alue									
	0001 = 1:	2 Postscale V	alue									
	•											
	1111 = 1:	16 Postscale										
bit 2	TMR2ON:	: Timer2 On bi	t									
	1 = Timer	2 is on										
	0 = Timer	2 is off										
bit 1-0	T2CKPS1	:T2CKPS0: T	imer2 Clock	Prescale Se	lect bits							
	00 = 1:1 F	Prescaler Value	е									
	01 = 1:4 F	Prescaler Value	e									
	1x = 1:16	Prescaler Val	ue									
	Legend:											
	R = Read	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
	-n = Value	at POR	'1' = B	it is set	'0' = Bit is c	leared	x = Bit is un	known				

9 – MODE PWM DU MODULE CCP

Rappel : PWM signifie Pulse Width Modulation. En Français MLI, modulation de largeur d'impulsion. Il s'agit donc de réaliser un signal dont la largeur de l'impulsion et donc le rapport cyclique est programmable.

Ce mode permet de délivrer sur la patte RB3 utilisée en sortie un signal PWM grâce à l'utilisation du timer 2.

RB3 doit donc être configuré en sortie $\text{TRISB}_3 = 0$. Le timer 2 doit être activé (registre T2CON).

Dans ce mode, le registre 8 bits CCPR1L auquel s'ajoutent les bits 4 et 5 du registre CCP1CON constitue un mot de 10 bits correspondant à la largeur de l'impulsion :

Largeur de l'impulsion = CCPR1L :CCP1CON<5 :4>. Tosc . (valeur du pré-diviseur du timer 2)

La période du signal PWM dépend d'une valeur devant être écrite dans le registre PR2. Elle est donnée par la relation :

```
Période PWM = (PR2 + 1) . 4 T_{osc} . (valeur du pré-diviseur du Timer 2 )
```

La période PWM doit être supérieure à la durée de l'impulsion.

Quand TMR2 = PR2 cela entraîne au cycle suivant :

- La remise à zéro du timer 2
- La mise à 1 de la sortie RB3
- Le rapport cyclique est transmis de CCPR1L à CCPR1H.

Le bit 1 TMR2IF du registre PIR1 signale l'égalité timer 2 = PR2 en passant à 1. Ce drapeau doit alors être remis à zéro dans le programme.